

Learning GNNs with CogDL

Yukuo Cen, Jie Tang

Knowledge Engineering Group (KEG) Computer Science and Technology Tsinghua University

CogDL is publicly available at https://github.com/THUDM/cogdl

Outline

- Preliminary
- Basic GNNs
- Advanced GNNs
- All with CogDL

Networked World

Machine Learning with Networks

- ML tasks in networks:
 - Node classification
 - Predict a type of a given node
 - Link prediction
 - Predict whether two nodes are linked
 - Community detection
 - Identify densely linked clusters of nodes
 - Network similarity
 - How similar are two (sub)networks?

Why is it hard?

- Modern deep learning toolkit is designed for simple sequences or grids.
 - CNNs for fixed-size images/grids...
 - RNNs or word2vec for text/sequences...

- But networks are far more complex!
 - Complex topographical structure
 - No fixed node ordering or reference point
 - Often dynamic and have multimodal features.

Why is it hard? (cont.)

- Billion-scale real-world graphs!
 - How to store large-scale graphs
 - Large cost of model training
 - GPU memory bounded
- Potential issues in training GNNs
 - Over-fitting issue
 - Over-smoothing issue

CogDL Introduction

CogDL aims at providing researchers and developers with easy-to-use APIs, reproducible results, and high efficiency for most graph tasks and applications.

Philosophy

Easy-to-use

Reproducibility

Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yang Yang, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. CogDL: An Extensive Toolkit for Deep Learning on Graphs. arXiv preprint 2021.

CogDL Development

Tasks, Datasets, Models in CogDL

- >10 Tasks:
 - node classification
 - graph classification
- >60 Datasets:
 - Social networks
 - Academic graphs
 - Molecular graphs
- >70 models:
 - Network embedding
 - Graph Neural Networks

Experiment API

 Feed task, dataset, model, (hyper-parameters), (search space)

```
from cogdl import experiment
# basic usage
experiment(task="node classification", dataset="cora", model="gcn")
# set other hyper-parameters
experiment(task="node classification", dataset="cora", model="gcn", hidden size=32, max epoch=200)
# run over multiple models on different seeds
experiment(task="node_classification", dataset="cora", model=["gcn", "gat"], seed=[1, 2])
# automl usage
def func_search(trial):
    return {
        "lr": trial.suggest_categorical("lr", [1e-3, 5e-3, 1e-2]),
        "hidden_size": trial.suggest_categorical("hidden_size", [32, 64, 128]),
        "dropout": trial.suggest uniform("dropout", 0.5, 0.8),
```

experiment(task="node_classification", dataset="cora", model="gcn", seed=[1, 2], func_search=func_search)

Results of Experiment API

In [3]:]: from cogdl import experiment							
	<pre># basic usage experiment(task="node_classification", dataset="cora", model="gcn")</pre>							
	Failed to load C version of sampling, use python version instead. Namespace(activation='relu', checkpoint=None, cpu=False, dataset='cora', device_id=[0], dropout=0.5, fast_spmm=False, hidden_s ize=64, inference=False, lr=0.01, max_epoch=500, missing_rate=0, model='gcn', norm=None, num_classes=None, num_features=None, num_layers=2, patience=100, residual=False, save_dir='.', save_model=None, seed=1, task='node_classification', trainer=None, u se_best_config=False, weight_decay=0.0005) Downloading https://cloud.tsinghua.edu.cn/d/6808093f7f8042bfalf0/files/?p=%2Fcora.zip&dl=1 unpacking cora.zip Processing							
	Epoch: 455, Train: 1.0000, Val: 0.7920, ValLoss: 0.7300: 89%							
	Valid accurracy = 0.7940 Test accuracy = 0.8100 Variant Acc ValAcc							

Out[3]: defaultdict(list, {('cora', 'gcn'): [{'Acc': 0.81, 'ValAcc': 0.794}]})

Results of Node Classification

- Two kinds of models:
 - Semi-supervised: GCN, GAT, GRAND, ...
 - Self-supervised: MVGRL, DGI
- Citation networks: Cora, Citeseer, Pubmed

Rank	Method	Cora	Citeseer	Pubmed	Reproducible
1	GRAND [12]	84.8	75.1	82.4	Yes
2	GCNII [7]	85.1	71.3	80.2	Yes
3	MVGRL [20]	83.6 ↓	73.0	80.1	Partial
4	APPNP [26]	84.3 ↑	72.0	80.0	Yes
5	Graph-Unet [15]	83.3 ↓	71.2 ↓	79.0	Partial
6	GDC [27]	82.5	72.1	79.8	Yes
7	GAT [53]	82.9	71.0	78.9	Yes
8	DropEdge [38]	82.1	72.1	79.7	Yes
9	GCN [25]	82.3 ↑	71.4 ↑	79.5	Yes
10	DGI [52]	82.0	71.2	76.5	Yes
11	JK-net [58]	81.8	69.5	77.7	Yes
12	Chebyshev [8]	79.0	69.8	68.6	Yes

Results of Graph Classification

- Two kinds of models
 - Self-supervised: InfoGraph, graph2vec, DGK
 - Supervised: GIN, DiffPool, SortPool, ...
- Two types of graphs
 - Bioinformatics: MUTAG, PTC, NCI1, PROTEINS
 - Social networks: IMDB-B/M, COLLAB, REDDIT-B

Algorithm	MUTAG	PTC	NCI1	PROTEINS	IMDB-B	IMDB-M	COLLAB	REDDIT-B	Reproducible
GIN [57]	92.06	67.82	81.66	75.19	76.10	51.80	79.52	83.10↓	Yes
InfoGraph [42]	88.95	60.74	76.64	73.93	74.50	51.33	79.40	76.55	Yes
DiffPool [62]	85.18	58.00	69.09	75.30	72.50	50.50	79.27	81.20	Yes
SortPool [67]	87.25	62.04	73.99 ↑	74.48	75.40	50.47	80.07 ↑	78.15	Yes
graph2vec [31]	83.68	54.76↓	71.85	73.30	73.90	52.27	85.58 ↑	91.77	Yes
PATCHY_SAN [32]	86.12	61.60	69.82	75.38	76.00 ↑	46.40	74.34	60.61	Yes
DGCNN [56]	83.33	56.72	65.96	66.75	71.60	49.20	77.45	86.20	Yes
SAGPool [28]	71.73↓	59.92	72.87	74.03	74.80	51.33	/	89.21	Yes
DGK [59]	85.58	57.28	/	72.59	55.00 ↓	40.40 ↓	/	/	Partial

Pipeline API

• Feed application, model, (hyper-parameters)

Outline

- Preliminary
- Basic GNNs
- Advanced GNNs
- All with CogDL

Graph Neural Networks

• Layer-wise propagation: $f(H^{(l)}, A) = \sigma(AH^{(l)}W^{(l)})$

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR '17.

Graph Neural Networks

- Neighborhood Aggregation:
 - Aggregate neighbor information and pass into a neural network
 - It can be viewed as a center-surround filter in CNN---graph convolutions!

GCN: Graph Convolutional Networks

GCN Performance

• 2-layer GCN: $Z = \operatorname{softmax}(\widetilde{A} \sigma(\widetilde{A} X W_0) W_1)$

Dataset	Туре	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

GraphSAGE

$$\mathbf{u}_{v}^{\kappa} = \sigma([\mathbf{A}_{k} \cdot \operatorname{AGG}(\{h_{u}^{\kappa-1}, \forall u \in N(v)\}), \mathbf{B}_{k}h_{v}^{\kappa-1}])$$

Generalized aggregation: any differentiable function that maps set of vectors to a single vector

GraphSAGE

Generalized aggregation: any differentiable function that maps set of vectors to a single vector

GraphSAGE Performance

- AGGs: GCN / mean / LSTM / max-pooling
- Supervised (Sup.), Unsupervised (Unsup.)

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324		_
DeepWalk + features	0.701	0.701	0.691	0.691	_	_
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Graph Attention Networks (GAT)

Realistically, neighbors play different influences

Graph Attention Networks (GAT)

GCN
$$\boldsymbol{h}_{v}^{k} = \sigma(\boldsymbol{W}_{k} \sum_{u \in N(v) \cup v} \frac{\boldsymbol{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}})$$

Graph Attention

$$\boldsymbol{h}_{v}^{k} = \sigma(\sum_{u \in \mathbf{N}(v) \cup v} \alpha_{v,u} \boldsymbol{W}^{k} \boldsymbol{h}_{u}^{k-1})$$

Learned attention weights

Graph Attention Networks (GAT)

- How to compute attention coefficients?
- $e_{vu} = \text{LeakyReLU}(r^T[Wh_v||Wh_u])$

• $\alpha_{vu} = \operatorname{softmax}(e_{vu}) = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$

GAT Performance

Transductive							
Method	Cora	Citeseer	Pubmed				
MLP	55.1%	46.5%	71.4%				
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%				
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%				
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%				
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%				
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%				
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%				
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%				
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%				
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	_	$78.8\pm0.3\%$				
GCN-64*	$81.4\pm0.5\%$	$70.9\pm0.5\%$	$\textbf{79.0}\pm0.3\%$				
GAT (ours)	$\textbf{83.0}\pm0.7\%$	$72.5\pm0.7\%$	$\textbf{79.0}\pm0.3\%$				

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	$\textbf{0.973} \pm 0.002$

Outline

- Preliminary
- Basic GNNs
- Advanced GNNs
- All with CogDL

Advanced GNNs

- JKNet (ICML'18)
- APPNP (ICLR'19)
- DropEdge (ICLR'20)
- GRAND (NeurIPS'20)
- GCNII (ICML'20)
- DeeperGCN (Arxiv 2020)
- RevGNN (ICML'21)

JKNet (ICML'18)

 Connections between influence distributions and random walk distribution:

Figure 2. Influence distributions of GCNs and random walk distributions starting at the square node

- Hard to determine propagation step!
- Layer aggregation!

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "Representation learning on graphs with jumping knowledge networks." In ICML'18.

JKNet (ICML'18)

- Layer-aggregation Mechanism
 - Concatenation
 - Max-pooling
 - LSTM-attention

Model	Citeseer	Model	Cora
GCN (2)	77.3 (1.3)	GCN (2)	88.2 (0.7)
GAT (2)	76.2 (0.8)	GAT (3)	87.7 (0.3)
JK-MaxPool (1)	77.7 (0.5)	JK-Maxpool (6)	89.6 (0.5)
JK-Concat (1)	78.3 (0.8)	JK-Concat (6)	89.1 (1.1)
JK-LSTM (2)	74.7 (0.9)	JK-LSTM (1)	85.8 (1.0)

APPNP (ICLR'19)

• Personalized PageRank (PPR):

$$oldsymbol{\pi}_{ ext{ppr}}(oldsymbol{i}_x) = (1\!-\!lpha) oldsymbol{ ilde{oldsymbol{A}}} oldsymbol{\pi}_{ ext{ppr}}(oldsymbol{i}_x) \!+\! lpha oldsymbol{i}_x$$

• By solving the equation, we obtain:

$$\boldsymbol{\pi}_{\mathrm{ppr}}(\boldsymbol{i}_x) = lpha \left(\boldsymbol{I}_n - (1-lpha) \boldsymbol{\hat{A}} \right)^{-1} \boldsymbol{i}_x$$

- Personalized propagation of neural predictions (PPNP):
 - generate predictions based on its own features and then propagate them via PPR:

$$oldsymbol{Z}_{ ext{PPNP}} = ext{softmax} \left(lpha \left(oldsymbol{I}_n - (1-lpha) oldsymbol{\hat{A}}
ight)^{-1} oldsymbol{H}
ight), \qquad oldsymbol{H}_{i,:} = f_ heta(oldsymbol{X}_{i,:}),$$

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank. In ICLR'19.

APPNP (ICLR'19)

• PPNP needs $O(n^2)$ to calculate the full PPR matrix:

$$\mathbf{\Pi}_{\mathrm{ppr}} = lpha (\boldsymbol{I}_n - (1-lpha) \boldsymbol{\hat{A}})^{-1}$$

- Approximate PPNP (APPNP):
 - via power iteration (random walk/propagation) step

$$egin{aligned} oldsymbol{Z}^{(0)} &= oldsymbol{H} = f_{ heta}(oldsymbol{X}), \ oldsymbol{Z}^{(k+1)} &= (1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(k)} + lpha oldsymbol{H}, \ oldsymbol{Z}^{(K)} &= ext{softmax} \left((1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(K-1)} + lpha oldsymbol{H}
ight), \end{aligned}$$

DropEdge (ICLR'20)

- Two issues: over-fitting and over-smoothing
- DropEdge: $A_{drop} = A A'$
- Prevent over-fitting:
 - unbiased data augmentation
- Alleviate over-smoothing:
 - Slow down the convergence of over-smoothing
 - Reduce information loss

DropEdge Discussion

- DropEdge vs Dropout
 - Dropout: no help to prevent over-smoothing

- DropEdge vs DropNode

 GraphSAGE, FastGCN, ASGCN
- DropEdge vs Graph-Sparsification
 Random vs Fixed

DropEdge Performance

	•	•	-				
		2 layers		8 layers		32 layers	
Dataset	Backbone	Orignal	DropEdge	Orignal	DropEdge	Orignal	DropEdge
	GCN	86.10	86.50	78.70	85.80	71.60	74.60
Cora	ResGCN	-	-	85.40	86.90	85.10	86.80
	JKNet	-	-	86.70	87.80	87.10	87.60
coru	IncepGCN	-	-	86.70	88.20	87.40	87.70
	GraphSAGE	87.80	88.10	84.30	87.10	31.90	32.20
	GCN	75.90	78.70	74.60	77.20	59.20	61.40
	ResGCN	-	-	77.80	78.80	74.40	77.90
Citeseer	JKNet	-	-	79.20	80.20	71.70	80.00
Chebeer	IncepGCN	-	-	79.60	80.50	72.60	80.30
	GraphSAGE	78.40	80.00	74.10	77.10	37.00	53.60
	GCN	90.20	91.20	90.10	90.90	84.60	86.20
	ResGCN	-	-	89.60	90.50	90.20	91.10
Pubmed	JKNet	-	-	90.60	91.20	89.20	91.30
i uomea	IncepGCN	-	-	90.20	91.50	OOM	90.50
	GraphSAGE	90.10	90.70	90.20	91.70	41.30	47.90
	GCN	96.11	96.13	96.17	96.48	45.55	50.51
	ResGCN	-	-	96.37	96.46	93.93	94.27
Reddit	JKNet	-	-	96.82	97.02	OOM	OOM
Reduit	IncepGCN	-	-	96.43	96.87	OOM	OOM
	GraphSAGE	96.22	96.28	96.38	96.42	96.43	96.47

Table 1: Testing accuracy (%) comparisons on different backbones w and w/o DropEdge.
GRAND (NeurIPS'20)

Graph Random Neural Network (GRAND)

- Consistency Regularized Training:
 - Generates *S* data augmentations of the graph
 - Optimizing the consistency among *S* augmentations of the graph.

Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

GRAND (NeurIPS'20)

- **Random Propagation** (DropNode + Propagation):
 - Enhancing robustness: Each node is enabled to be not sensitive to specific neighborhoods.
 - Mitigating over-smoothing and overfitting: Decouple feature propagation from feature transformation.

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Random propagation: DropNode vs Dropout

- Dropout drops each element in *X* independently
- DropNode drops the entire features of selected nodes, i.e., the row vectors of *X*, randomly

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

GRAND (NeurIPS'20)

Random Propagation as data augmentation

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

GRAND: Consistency Regularization

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

GRAND Results

-	Method	Cora	Citeseer	Pubmed
_	GCN [19]	81.5	70.3	79.0
	GAT [32]	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3
	APPNP [20]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3
0.011	Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	79.6 ± 0.2
GCNs	SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
	MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$
	GMNN [28]	83.7	72.9	81.8
	GraphNAS [12]	84.2 ± 1.0	73.1±0.9	79.6 ± 0.4
Sampling	GraphSAGE [16]	78.9±0.8	67.4±0.7	77.8±0.6
GCNs	FastGCN [7]	$81.4 {\pm} 0.5$	68.8 ± 0.9	$77.6 {\pm} 0.5$
-	VBAT [10]	83.6±0.5	74.0±0.6	79.9±0.4
Regularization	G ³ NN [24]	82.5 ± 0.2	74.4 ± 0.3	77.9 ± 0.4
GCNs	GraphMix [33]	83.9±0.6	74.5 ± 0.6	81.0 ± 0.6
	DropEdge [29]	82.8	72.3	79.6
-	GRAND	85.4±0.4	75.4±0.4	82.7±0.6

Instead of the marginal improvements by conventional GNN baselines over GCN, *GRAND* achieves *much more significant performance lift in all three datasets*!

- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

GCNII (ICML'20)

- Initial residual connection:
 - Similar approach to APPNP (but APPNP remains shallow)
 - Combine the smoothed representations with initial features

$$(1-\alpha)\tilde{\boldsymbol{P}}\boldsymbol{H}^{(\ell)}+\alpha\boldsymbol{H}^{(0)}$$

- Identity mapping:
 - Similar to the motivation of ResNet
 - Add an identity matrix to the weight matrix

$$(1-\beta_\ell)\mathbf{I}_n+\beta_\ell \mathbf{W}^{(\ell)}$$

GCNII Results

- GCNII (Combine the two techniques) $\mathbf{H}^{(\ell+1)} = \sigma \left(\left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} + \alpha_{\ell} \mathbf{H}^{(0)} \right) \left((1 - \beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}^{(\ell)} \right) \right)$
- GCNII*: employ different weights for PH and H⁽⁰⁾: $\mathbf{H}^{(\ell+1)} = \sigma \left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} \left((1 - \beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}_{1}^{(\ell)} \right) + \alpha_{\ell} \mathbf{H}^{(0)} \left((1 - \beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}_{2}^{(\ell)} \right) \right).$

Method	Cora	Cite.	Pumb.	Cham.	Corn.	Texa.	Wisc.
GCN	85.77	73.68	88.13	28.18	52.70	52.16	45.88
GAT	86.37	74.32	87.62	42.93	54.32	58.38	49.41
Geom-GCN-I	85.19	77.99	90.05	60.31	56.76	57.58	58.24
Geom-GCN-P	84.93	75.14	88.09	60.90	60.81	67.57	64.12
Geom-GCN-S	85.27	74.71	84.75	59.96	55.68	59.73	56.67
APPNP	87.87	76.53	89.40	54.3	73.51	65.41	69.02
JKNet	85.25 (16)	75.85 (8)	88.94 (64)	60.07 (32)	57.30 (4)	56.49 (32)	48.82 (8)
JKNet(Drop)	87.46 (16)	75.96 (8)	89.45 (64)	62.08 (32)	61.08 (4)	57.30 (32)	50.59 (8)
Incep(Drop)	86.86 (8)	76.83 (8)	89.18 (4)	61.71 (8)	61.62 (16)	57.84 (8)	50.20 (8)
GCNII	88.49 (64)	77.08 (64)	89.57 (64)	60.61 (8)	74.86 (16)	69.46 (32)	74.12 (16)
GCNII*	88.01 (64)	77.13 (64)	90.30 (64)	62.48 (8)	76.49 (16)	77.84 (32)	81.57 (16)

DeeperGCN

- Generalized Aggregation Function (Mean-Max)
 Find a better aggregator than *mean* and *max*
- SoftMax_Agg: $\sum_{u \in \mathcal{N}(v)} \frac{exp(\beta \mathbf{m}_{vu})}{\sum_{i \in \mathcal{N}(v)} exp(\beta \mathbf{m}_{vi})}$
 - $\lim_{\beta \to 0} \text{SoftMax}_Agg_\beta = \text{Mean}$
 - $-\lim_{\beta\to\infty} \text{SoftMax}_Agg_\beta = Max$
- PowerMean: $(\frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \mathbf{m}_{vu}^p)^{1/p}$
 - PowerMean_Agg_{p=1} = Mean
 - $-\lim_{p\to\infty} \operatorname{PowerMean}_{\operatorname{Agg}_p} = \operatorname{Max}$

DeeperGCN

- Better residual connections:
 - pre-activation variant of residual connections
 - BN/LN \rightarrow ReLU \rightarrow GraphConv \rightarrow Addition

	PlainGCN			ResGCN			ResGCN+		
#layers	Sum	Mean	Max	Sum	Mean	Max	Sum	Mean	Max
3	0.824	0.793	0.834	0.824	0.786	0.824	0.830	0.792	0.829
7	0.811	0.796	0.823	0.831	0.803	0.843	0.841	0.813	0.845
14	0.821	0.802	0.824	0.843	0.808	0.850	0.840	0.813	0.848
28	0.819	0.794	0.825	0.837	0.807	0.847	0.845	0.819	0.855
56	0.824	0.808	0.825	0.841	0.813	0.851	0.843	0.810	0.853
112	0.823	0.810	0.824	0.840	0.805	0.851	0.853	0.820	0.858
avg.	0.820	0.801	0.826	0.836	0.804	0.844	0.842	0.811	0.848

	SoftMax_Agg			Pow	erMean_	Agg
#layers	Fixed	β	$\beta\&s$	Fixed	p	p&s
3	0.821	0.832	0.837	0.802	0.818	0.838
7	0.835	0.846	0.848	0.797	0.841	0.851
14	0.833	0.849	0.851	0.814	0.840	0.849
28	0.845	0.852	0.853	0.816	0.847	0.854
56	0.849	0.860	0.854	0.818	0.846	-
112	0.844	0.858	0.858	0.824	-	-
avg.	0.838	0.850	0.850	0.812	0.838	0.848

Deep GNNs (From 112 to 1000 layers)

- DeeperGCN: All You Need to Train Deeper GCNs
 - Li et al., June 2020
 - Generalized Message Aggregation
 - Pre-activation residual connections
 - Up to 112 layers (GPU memory bounded)
- Training Graph Neural Networks with 1000 Layers
 - Li et al., ICML 2021
 - Reversible connections
 - Up to 1000 layers

Recall Backpropagation in GNNs

Graph convolution:

$$\boldsymbol{H}^{(l+1)} = \boldsymbol{A}\boldsymbol{H}^{(l)}\boldsymbol{W}_l$$

• Backward of graph convolution:

$$\nabla_{\boldsymbol{H}^{(l)}} = \boldsymbol{A}^{T} \nabla_{\boldsymbol{H}^{(l+1)}} \boldsymbol{W}_{l}^{T}$$
$$\nabla_{\boldsymbol{W}_{l}} = \boldsymbol{H}^{(l)}{}^{T} \boldsymbol{A}^{T} \nabla_{\boldsymbol{H}^{(l+1)}}$$
$$\nabla_{\boldsymbol{A}} = \nabla_{\boldsymbol{H}^{(l+1)}} \boldsymbol{W}_{l}^{T} \boldsymbol{H}^{(l)}{}^{T}$$

We need to save H^(l) for each layer, which costs O(ND) memory per layer.

GNNs with 1000 Layers (ICML'21)

- Challenges: O(LND) memory, linear to the number layers
- Reversible connections!
- (similar to NeurIPS 2017: The reversible residual network: Backpropagation without storing activations)
- Grouped Reversible GNN block:

$$\langle X_1, X_2, ..., X_C \rangle \mapsto \langle X'_1, X'_2, ..., X'_C \rangle$$

Forward (from
$$X_i$$
 to X_i')
 $X'_0 = \sum_{i=2}^C X_i$
 $X'_i = f_{w_i}(X'_{i-1}, A, U) + X_i, i \in \{1, \dots, C\}$
 $X'_1 = X'_1 - f_{w_1}(X'_0, A, U).$
Backward (from X_i' to X_i)
 $X_i = X'_i - f_{w_i}(X'_{i-1}, A, U), i \in \{2, \dots, C\}$
 $X'_0 = \sum_{i=2}^C X_i$
 $X_1 = X'_1 - f_{w_1}(X'_0, A, U).$

RevGNN on ogbn-proteins

- ogbn-proteins dataset:
 - Node: proteins
 - Edge: biologically meaningful associations (e.g., homology)

Model	ROC-AUC ↑	Mem ↓	Params
GCN (Kipf & Welling)	72.51 ± 0.35	4.68	96.9k
GraphSAGE (Hamilton et al.)	77.68 ± 0.20	3.12	193k
DeeperGCN (Li et al.)	86.16 ± 0.16	27.1	2.37M
UniMP (Shi et al.)	$\textbf{86.42} \pm 0.08$	27.2	1.91M
GAT (Veličković et al.)	$\textbf{86.82} \pm 0.21$	6.74	2.48M
UniMP+CEF (Shi et al.)	$\textbf{86.91} \pm 0.18$	27.2	1.96M
Ours (RevGNN-Deep)	87.74 ± 0.13	2.86	20.03M
Ours (RevGNN-Wide)	88.24 ± 0.15	7.91	68.47M

RevGNN v.s. ResGNN

RevGNN v.s. all variants

- RevGNN-Wide
 - 448 layers+224 hidden
- RevGNN-Deep
 - 1001 layers+80 hidden
- Compared with RevGNN/ResGNN/W T/DEQ-x (x: hidden)
- Datapoint size is proportional to \sqrt(#parameters)

Outline

- Preliminary
- Basic GNNs
- Advanced GNNs
- All with CogDL

All with CogDL

- Efficiency
 - Graph storage in CogDL
 - Sparse operators in CogDL
 - Training on large-scale graphs
 - Training very deep GNNs
- Customization
 - Customized usage in CogDL
- Benchmarks:
 - Self-supervised learning
 - Heterogeneous Graph Benckmark (HGB)
 - Graph Robustness Benchmark (GRB)
- Applications:
 - Recommendation

Sparse Storage of Adjacency Matrix

- COO format:
 - (row, col) or (row, col, value), size: $|E|^{2/3}$ -[[0,0,1], [0,2,2], [1,2,3], [2,0,4], [2,1,5], [2,2,6]]
- CSR format:
 - -row ptr: size |V|+1
 - col indices: size |E|
 - value: size |E|
 - -[0, 2, 3, 6], [0, 2, 2, 0, 1, 2], [1, 2, 3, 4, 5, 6]

Graph Storage in CogDL

class Graph: (defined in cogdl.data)

- x: node feature matrix
- y: node labels
- edge_index: COO format matrix
- edge_weight: edge weight (if exists)
- edge_attr: edge attributes (if exists)
- row_ptr: row index pointer for CSR matrix
- col_indices: column indices for CSR matrix

Usage of CogDL's Graph

- Graph Initialization
 - g = Graph(edge_index=edge_index)
 - g.edge_weight = torch.rand(n)
- Commonly used operators:
 - add_self_loops()
 - sym_norm()
 - degrees()
 - subgraph()

Recall Sparse Operators in GNNs

• GCN (Sparse Maxtrix-Matrix Multiplication, SpMM) $H^{(i+1)} = AH^{(i)}W$

GCN/GAT Layer in CogDL

GCN Layer
graph: cogdl.data.Graph
x: node featurs

weight: parameters

```
h = torch.mm(x, weight)
h = spmm(graph, h)
out = torch.relu(h)
```

GAT Layer
graph: cogdl.data.Graph
h: node featurs
h_score: importance score of edge

edge_attention = mul_edge_softmax(graph, edge_score)
h = mh_spmm(graph, edge_attention, h)
out = torch.cat(h, dim=1)

 $H^{(i+1)} = AH^{(i)}\boldsymbol{W}^{(i)}$

$$\alpha_{ij} = softmax(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in N_i} \exp(e_{ik})}$$
$$h_i = CONCAT\left(\sigma\left(\sum_{j \in N_i} \alpha_{ij}^k \mathbf{W}^k h_j\right)\right)$$

Implementation of GCN/GAT Layer

.....

class GATLayer(nn.Module):

```
class GCNLayer(nn.Module):
```

.....

```
Simple GCN layer, similar to <a href="https://arxiv.o">https://arxiv.o</a>
```

```
def __init__(self, in_features, out_features)
```

```
def reset_parameters(self): ...
```

```
def forward(self, graph, x):
    support = torch.mm(x, self.weight)
    out = spmm(graph, support)
```

 $H^{(i+1)} = AH^{(i)}W^{(i)}$

```
Sparse version GAT layer, similar to <a href="https://arxiv.org/ab">https://arxiv.org/ab</a>
```

def __init__(self, in_features, out_features, nhead=1, al

```
def reset_parameters(self): ...
```

```
def forward(self, graph, x):
    h = torch.matmul(x, self.W)
    edge_score = self.compute_edge_score(graph, x, h)
    # edge_attention: E * H
    edge_attention = mul_edge_softmax(graph, edge_score)
    edge_attention = self.dropout(edge_attention)
```

out = mh_spmm(graph, edge_attention, h)

$$\alpha_{ij} = softmax(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in N_i} \exp(e_{ik})}$$
$$h_i = CONCAT\left(\sigma\left(\sum_{j \in N_i} \alpha_{ij}^k W^k h_j\right)\right)$$

Efficient Sparse Kernels

Deep Graph Sparse (dgSPARSE) Library

Performance of GCN/GAT model

- Setting: 2-layer GCN/GAT, hidden size=128
- Supported by dgSPAESE

Model	GPU	Dataset	Tranining per epoch (s) Inference per epoc	Inference per epoch (s)		
			torch PyG DGL CogDL torch PyG DGL	CogDL		
GCN	2080Ti (11G)	Flickr Reddit Yelp	0.0250.00840.0120.0850.0120.00340.0070.4450.1220.1020.0810.2180.0450.0490.4120.1510.1510.1100.1910.0530.063	0.0035 0.039 0.040		
	3090 (24G)	Flickr Reddit Yelp	0.0170.0060.0080.0070.0080.0020.0040.2630.0620.0600.0500.1270.0220.03140.2300.0810.0800.0620.1060.0290.036	0.002 0.022 0.023		
GAT 2080Ti (3090 (24	2080Ti (11G)	PubMed Flickr *Reddit	0.017 0.016 0.011 0.012 0.004 0.006 0.004 0.082 0.090 0.047 0.056 0.023 0.030 0.019 ‡ ‡ 0.406 0.537 ‡ ‡ 0.163	0.003 0.014 0.086		
	3090 (24G)	PubMed Flickr Reddit Yelp	0.0430.0110.0110.0160.0040.0040.0030.0970.0590.0330.0440.0210.0240.0130.671‡0.3010.3730.112‡0.1130.614‡0.2940.4040.118‡0.105	0.002 0.009 0.088 0.113		

Training on Large-scale Graphs

- Billion-scale social networks and recommender systems
- Main challenge: GPU memory bounded!
- Training GNNs via mini-batch sampling

- 1. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NeurIPS '17.
- 2. Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. In KDD '19.
- 3. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph sampling based inductive learning method. In ICLR '20.

ClusterGCN

- Graph partition (METIS)
- Train GNNs via mini-batch

	GCN [9]	Vanilla SGD	GraphSAGE [5]	FastGCN [1]	VR-GCN [2]	Cluster-GCN
Time complexity	$O(L A _0F + LNF^2)$	$O(d^L N F^2)$	$O(r^L N F^2)$	$O(rLNF^2)$	$O(L A _0F + LNF^2 + r^L NF^2)$	$O(L A _0F + LNF^2)$
Memory complexity	$O(LNF + LF^2)$	$O(bd^LF + LF^2)$	$O(br^LF + LF^2)$	$O(brLF + LF^2)$	$O(LNF + LF^2)$	$O(bLF + LF^2)$

	Time		Me	emory	Test F1 score	
	VRGCN	Cluster-GCN	VRGCN	Cluster-GCN	VRGCN	Cluster-GCN
Amazon2M (2-layer)	337s	1223s	7476 MB	2228 MB	89.03	89.00
Amazon2M (3-layer)	1961s	1523s	11218 MB	2235 MB	90.21	90.21
Amazon2M (4-layer)	N/A	2289s	OOM	2241 MB	N/A	90.41

GraphSAINT

- Unbiased sampler
 - Random node/edge/walk sampler
- Unbiased aggregated representations

$$\zeta_{v}^{(\ell+1)} = \sum_{u \in \mathcal{V}} \frac{\widetilde{A}_{v,u}}{\alpha_{u,v}} \left(\boldsymbol{W}^{(\ell)} \right)^{\mathsf{T}} \boldsymbol{x}_{u}^{(\ell)} \mathbb{1}_{u|v} = \sum_{u \in \mathcal{V}} \frac{\widetilde{A}_{v,u}}{\alpha_{u,v}} \tilde{\boldsymbol{x}}_{u}^{(\ell)} \mathbb{1}_{u|v}$$

 $\mathcal{G}_s = \texttt{SAMPLE}(\mathcal{G})$

Full GCN on \mathcal{G}_s

GraphSAINT Performance

Dataset	Nodes	Edges	Degree	Feature	Classes	Train / Val / Test
PPI	14,755	225,270	15	50	121 (m)	0.66 / 0.12 / 0.22
Flickr	89,250	899,756	10	500	7 (s)	0.50 / 0.25 / 0.25
Reddit	232,965	11,606,919	50	602	41 (s)	0.66 / 0.10 / 0.24
Yelp	716,847	6,977,410	10	300	100 (m)	0.75/0.10/0.15
Amazon	1,598,960	132,169,734	83	200	107 (m)	0.85 / 0.05 / 0.10
PPI (large version)	56,944	818,716	14	50	121 (m)	0.79/0.11/0.10

Method	PPI	Flickr	Reddit	Yelp	Amazon
GCN	$0.515 {\pm} 0.006$	$0.492{\pm}0.003$	$0.933 {\pm} 0.000$	$0.378 {\pm} 0.001$	$0.281 {\pm} 0.005$
GraphSAGE	$0.637 {\pm} 0.006$	$0.501{\pm}0.013$	$0.953 {\pm} 0.001$	$0.634 {\pm} 0.006$	$0.758 {\pm} 0.002$
FastGCN	$0.513 {\pm} 0.032$	$0.504{\pm}0.001$	$0.924{\pm}0.001$	$0.265 {\pm} 0.053$	$0.174 {\pm} 0.021$
S-GCN	$0.963 {\pm} 0.010$	$0.482{\pm}0.003$	$0.964{\pm}0.001$	$0.640 {\pm} 0.002$	‡
AS-GCN	$0.687 {\pm} 0.012$	$0.504{\pm}0.002$	$0.958 {\pm} 0.001$	‡	‡
ClusterGCN	$0.875 {\pm} 0.004$	$0.481{\pm}0.005$	$0.954{\pm}0.001$	$0.609 {\pm} 0.005$	$0.759{\pm}0.008$
GraphSAINT-Node	$0.960{\pm}0.001$	$0.507 {\pm} 0.001$	$0.962{\pm}0.001$	$0.641 {\pm} 0.000$	$0.782{\pm}0.004$
GraphSAINT-Edge	0.981 ±0.007	$0.510 {\pm} 0.002$	0.966 ±0.001	0.653±0.003	$0.807 {\pm} 0.001$
GraphSAINT-RW	0.981 ±0.004	0.511 ±0.001	0.966 ±0.001	0.653±0.003	0.815±0.001
GraphSAINT-MRW	$0.980{\pm}0.006$	$0.510{\pm}0.001$	$0.964{\pm}0.000$	$0.652{\pm}0.001$	$0.809{\pm}0.001$

Multi-GPU Training

Multi-GPU implementation: sampling + PyTorch DDP

- Sampler in CogDL
 [+] NeighborSampling
 [+] ClusterGCN
 [+] GraphSAINT
- ✓ 4 GPUs ~ 3x↑ speedup

Other Solutions for very Deep GNNs?

- GPU memory is the bottleneck for training very deep GNNs.
- Recall RevGNN uses reversible blocks.
- Are there other solutions?
- Activation Compressed Training!

ActNN : Activation Compressed Training

- ActNN : Reducing Training Memory Footprint via 2-Bit Activation Compressed Training (By Jianfei Chen, Tsinghua)
- "ActNN reduces the memory footprint of the activation by $12 \times .$ "
- <u>https://github.com/ucbrise/actnn</u>

ActNN Theory

Theorem 1. (Unbiased Gradient) There exists random quantization strategies for $\hat{\mathbf{C}}$, such that $\mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}}\right] = \nabla_{\boldsymbol{\Theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\Theta}).$

Theorem 2. (Convergence) If A1-A3 holds, and $0 < \alpha \leq \frac{1}{\beta}$, take the number of iterations t uniformly from $\{1, \ldots, T\}$, where T is a maximum number of iterations. Then

$$\mathbb{E} \left\| \nabla \mathcal{L}_{\mathcal{D}}(\boldsymbol{\Theta}_{t}) \right\|^{2} \leq \frac{2(\mathcal{L}(\boldsymbol{\Theta}_{1}) - \mathcal{L}_{inf})}{\alpha T} + \alpha \beta \sigma^{2}.$$
(6)

Theorem 3. (Gradient Variance)

$$\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}\right] = \operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}^{(l)}}\right] + \sum_{m=l}^{L} \mathbb{E}\left[\operatorname{Var}\left[\mathbf{G}_{\boldsymbol{\Theta}}^{(l \sim m)}\left(\hat{\nabla}_{\mathbf{H}^{(m)}}, \hat{\mathbf{C}}^{(m)}\right) \mid \hat{\nabla}_{\mathbf{H}^{(m)}}\right]\right].$$

ActNN Implementation

```
class RegularLayer:
    def forward(context, input):
        context.save_for_backward(input)
        return compute_output(input)
```

```
def backward(context, grad_output):
    input = context.saved_tensors
    return compute_gradient(grad_output, input)
```

```
class ActivationCompressedLayer:
    def forward(context, input):
        context.save_for_backward(compress(input))
        return compute_output(input)
```

```
def backward(context, grad_output):
    input = decompress(context.saved_tensors))
    return compute_gradient(grad_output, input)
```
ActNN Performance

• Experiment on ImageNet

Bits	32	4	3	2	1.5	1.25
FP	77.1	N/A	N/A	N/A	N/A	N/A
BLPA	N/A	76.6	Div.	Div.	N/A	N/A
ActNN (L2)	N/A	-	77.4	0.1	N/A	N/A
ActNN (L2.5)	N/A	-	-	77.1	75.9	75.1
ActNN (L3)	N/A	-	-	76.9	76.4	75.

Network	Dotoh	Total Mem. (GB)			A	ct. Mem. (GB))
Network	Datch	FP	ActNN (L3)	\mathbf{R}	FP	Act. Mem. (GE ActNN (L3) 0.44 0.88 1.32 7.01 0.39 0.79 1.18 3.91	R
	32	6.01	1.18	$5 \times$	5.28	0.44	$12 \times$
DecNet 159	64	11.32	1.64	$7 \times$	10.57	0.88	$12 \times$
neshet-152	96	OOM	2.11	/	OOM	1.32	/
	512	OOM	8.27	/	OOM	7.01	/
	2	5.76	1.39	$4 \times$	4.76	0.39	$12 \times$
ECN HD 48	4	10.52	1.79	$6 \times$	9.52	0.79	$12 \times$
F UN-1111-40	6	OOM	2.17	/	OOM	1.18	/
	NetworkBatchTotal Mem. (GB) FPActNN (L3)R 32 6.011.1852 64 11.321.6472 96 OOM2.11/ 512 OOM8.27/ 512 OOM8.27/ 512 OOM2.17/ 64 10.521.7962 64 0OM2.17/ 64 0OM2.17/ 72 676 1.39 42 64 10.52 1.79 62 64 $00M$ 2.17 / 72 $60M$ 2.17 / 72 $70M$ $72M$ $70M$ 72 $70M$ $70M$ $70M$ 72 </td <td>/</td> <td>OOM</td> <td>3.91</td> <td>/</td>	/	OOM	3.91	/		

When SpMM meets ActNN (in CogDL)

```
\boldsymbol{H}^{(i+1)} = \boldsymbol{A}\boldsymbol{H}^{(i)}\boldsymbol{W}
```

```
class SPMMFunction(torch.autograd.Function):
```

@staticmethod

def forward(ctx, rowptr, colind, feat, edge_weight_csr=None, sym=False):
 if edge_weight_csr is None:

out = spmm.csr_spmm_no_edge_value(rowptr, colind, feat)
else:

out = spmm.csr_spmm(rowptr, colind, edge_weight_csr, feat)
ctx.backward_csc = (rowptr, colind, feat, edge_weight_csr, sym)
return out

@staticmethod

```
def backward(ctx, grad_out):
    rowptr, colind, feat, edge_weight_csr, sym = ctx.backward_csc
    if edge weight csr is not None:
        grad out = grad out.contiguous()
        if sym:
            colptr, rowind, edge weight csc = rowptr, colind, edge weigh
        else:
            colptr, rowind, edge_weight_csc = spmm.csr2csc(rowptr, colin
        grad_feat = spmm.csr_spmm(colptr, rowind, edge_weight_csc, grad_
        grad edge weight = sddmm.csr sddmm(rowptr, colind, grad out, fea
    else:
        if sym is False:
            colptr, rowind, edge_weight_csc = spmm.csr2csc(rowptr, colin
            grad_feat = spmm.csr_spmm_no_edge_value(colptr, rowind, grad
        else:
            grad_feat = spmm.csr_spmm_no_edge_value(rowptr, colind, grad
        grad edge weight = None
    return None, None, grad feat, grad edge weight, None
```

class ActSPMMFunction(torch.autograd.Function):

@staticmethod

```
def forward(ctx, rowptr, colind, feat, edge_weight_csr=None, sym=False):
    if edge_weight_csr is None:
```

```
out = spmm.csr_spmm_no_edge_value(rowptr, colind, feat)
else:
```

out = spmm.csr_spmm(rowptr, colind, edge_weight_csr, feat)

```
quantized = quantize_activation(feat, None)
```

```
ctx.backward_csc = (rowptr, colind, quantized, edge_weight_csr, sym)
ctx.other_args = feat.shape
```

return out

@staticmethod

```
def backward(ctx, grad_out):
    rowptr, colind, quantized, edge_weight_csr, sym = ctx.backward_csc
    g input shape = ctx.other args
```

```
feat = dequantize activation(quantized, q_input_shape)
```

del quantized, ctx.backward_csc

```
if edge_weight_csr is not None:
```

```
grad_out = grad_out.contiguous()
```

```
if sym:
```

colptr, rowind, edge_weight_csc = rowptr, colind, edge_weight_cs
else:

```
colptr, rowind, edge_weight_csc = spmm.csr2csc(rowptr, colind, e
grad_feat = spmm.csr_spmm(colptr, rowind, edge_weight_csc, grad_out)
grad_edge_weight = sddmm.csr_sddmm(rowptr, colind, grad_out, feat)
```

Experimental Results

Default setting of CogDL

Dataset	Origin GCN	GCN + actnn
Cora	81.30 ± 0.22	81.27 ± 0.19
Citeseer	71.73 ± 0.54	71.70 ± 0.28
Pubmed	79.17 ± 0.12	79.10 ± 0.08
Flickr	50.74 ± 0.10	50.89 ± 0.04
Reddit	95.01 ± 0.02	94.89 ± 0.01

Activation Memory (GCN + ActNN)

• Setting: H = Dropout(ReLU(BN(AHW)))

#dataset, #layers, #hidden	Origin GCN	GCN + actnn	ratio	Idea ratio
PPI, 5, 2048	3704	420	8.8x	
PPI, 5, 2048 (+bn)	5484	539	10.2x	
PPI, 5, 2048 (+bn, +dropout)	7711	594	13.0x	raw: 32*2 / (2.125*2+1) =12.2x
Flickr, 5, 512	1420	154	9.2x	
Flickr, 5, 512 (+bn)	2117	201	10.5x	$+bn: 32^3 / (2 125^3) = 13 0x$
Flickr, 5, 512 (+bn, +dropout)	2991	223	13.4x	+bn+dropout: 32*4 /
Flickr, 10, 512	3178	311	10.2x	(2.125*3+2)=15.3x
Flickr, 10, 512 (+bn)	4747	415	11.4x	
Flickr, 10, 512 (+bn, +dropout)	6712	465	14.4x	

Activation Memory (GraphSAGE + ActNN)

• Setting: H = Dropout(ReLU(BN(Concat(AH, H)W)))

#dataset, #layers, #hidden	Origin SAGE	SAGE + actnn	ratio	Idea ratio
PPI, 5, 2048	5524	580	9.5x	
PPI, 5, 2048 (+bn)	7304	698	10.5x	
PPI, 5, 2048 (+bn, +dropout)	ООМ	754	-	raw: 32*2 / (2.125*2+1) =12.2x
Flickr, 5, 512	2457	209	11.8x	
Flickr, 5, 512 (+bn)	3155	255	12.4x	$+bn: 32^3 / (2 125^3) = 13 0x$
Flickr, 5, 512 (+bn, +dropout)	4027	278	14.5x	+bn+dropout: 32*4 /
Flickr, 10, 512	5090	430	11.8x	(2.125*3+2)=15.3x
Flickr, 10, 512 (+bn)	6659	534	12.5x	
Flickr, 10, 512 (+bn, +dropout)	8624	584	14.8x	

Activation Memory (GCNII + ActNN)

• Setting:
$$\mathbf{H}^{(\ell+1)} = \sigma \left(\left((1-\alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} + \alpha_{\ell} \mathbf{H}^{(0)} \right) \left((1-\beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}^{(\ell)} \right) \right)$$

#datasat							
#layers, #hidden	GCNII	actnn	ratio	ideal	#layer	Origin	GCNII + actnn
	4000	0.40	44.0		5	GCINII	
PPI, 10, 512	4008	340	11.8x		32	84.83 ±	84 67 + 0 12
PPI 20 512	7708	619	12.5x			0.33	04.07 - 0.12
	1100		12.07			85 13 +	85.00 ± 0.37
PPI, 20, 1024	7879	603	13.1x	(32*3) /	64	0.61	
				(2*2.125+2		84 83 +	
Flickr, 5, 512	3421	229	14.9x)=15.36	128	0.58	85.20 ± 0.36
Flickr. 10. 512	6268	413	15.2x			85.00 +	
			256	0.08	85.37 ± 0.54		
Elickr 5 1021	$a = \frac{1}{2} $				0.00		
$\begin{bmatrix} FIIGKI, 5, TOZ4 \end{bmatrix}$	0000	430	13.28				

Activation Memory (GIN + ActNN)

• Setting: $H^{(l)} = MLP^{(l)} \left((1 + \epsilon)H^{(l-1)} + AH^{(l-1)} \right)$ $h_G = CONCAT(READOUT(H^{(l)}), l = 0, 1, ... L$

#dataset, #batch, #layers, #hidden	GIN	GIN + actnn	ratio	ideal		
NCI1, 512, 20, 512	2723	262	10.4x			
NCI1, 512, 20, 1024	5735	540	10.6x	(32*3) / (2.125*3+1) =		
NCI1, 1024, 20, 512	5502	528	10.4x	13.0x		
NCI1, 512, 40, 512	6231	590	10.6x	1		

Solutions to Very Deep GNNs

	Memory complexity	Extra time	limitations	Suitable scenario
Reversible GNNs	O(ND)	One additional forward pass	Limited feature crosses; Some operations are limited (e.g, dropout)	Arbitrary layers
ActNN + GNN	O((L/C)ND), C: compression ratio (<16)	Quantize + Dequantize	Gradient approximation; Memory complexity is still linear to L	Hundreds of layers
GNN with checkpointing	O(sqrt(L)ND)	One additional forward pass	N/A	Thousands of layers

How to Design Customized Layer?

• Message Passing!

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$$
$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

- Message: func $(h_v, h_w, e_{vw}) \rightarrow m_{vw} \# |E|^*d$
- Aggregate: $func(m_{vw}) \rightarrow m_v$
- Update: func $(h_v, m_v) \rightarrow h_v$

|V|*d

|V|*d

Message-passing Layer in CogDL

- SpMM (*AX*) cannot handle complex propagation operators such as involving edge features
- Implementation via message passing

```
class BaseLayer(nn.Module):
    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)
    def forward(self, graph, x):
        m = self.message(x[graph.edge_index[0]])
        return self.aggregate(graph, m)
    def message(self, x):
        return x
    def aggregate(self, graph, x):
        result = torch.zeros(graph.num_nodes, x.shape[1], dtype=x.dtype).to(x.device)
        result.scatter_add_(0, graph.edge_index[1].unsqueeze(1).expand(-1, x.shape[1]), x)
        return result
```

Compare GIN with GINE

$$\mathbf{x}_i' = h_{\mathbf{\Theta}} \left((1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j
ight)$$

```
class GINLayer(nn.Module):
```

```
def __init__(self, apply_func=None, eps=0, train_eps=True):
    super(GINLayer, self).__init__()
```

```
if train_eps:
```

self.eps = torch.nn.Parameter(torch.FloatTensor([eps]))
else:

```
self.register_buffer("eps", torch.FloatTensor([eps]))
self.apply_func = apply_func
```

```
def forward(self, graph, x):
    out = (1 + self.eps) * x + spmm(graph, x)
    if self.apply_func is not None:
        out = self.apply_func(out)
        return out
```

$$\mathbf{x}_i' = h_{\mathbf{\Theta}} \left((1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \operatorname{ReLU}(\mathbf{x}_j + \mathbf{e}_{j,i})
ight)$$

```
class GINELayer(BaseLayer):
    def __init__(self, apply_func=None, eps=0, train_eps=True):
        super(GINELayer, self).__init__()
        if train_eps:
            self.eps = torch.nn.Parameter(torch.FloatTensor([eps]))
        else:
                self.register_buffer("eps", torch.FloatTensor([eps]))
        self.apply_func = apply_func
```

```
def forward(self, graph, x):
```

```
m = self.message(x[graph.edge_index[0]], graph.edge_attr)
out = self.aggregate(graph, m)
out += (1 + self.eps) * x
if self.apply_func is not None:
    out = self.apply_func(out)
return out
```

```
def message(self, x, attr):
    return F.relu(x + attr)
```

Customized Models

experiment(task="node_classification", dataset="cora", model="mygcn")

Customized Datasets

```
@register_dataset("mydataset")
class MyNodeDataset(NodeDataset):
    def __init__(self, path="data.pt"):
        self.path = path
        super(MyNodeDataset, self). __init__(path, scale_feat=False, metric="accuracy")
    def process(self):
        """You need to load your dataset and transform to `Graph`"""
        # Load and preprocess data
        edge index = torch.LongTensor([[0, 1], [0, 2], [1, 2], [1, 3]]).t()
        x = torch.randn(4, 10)
                                                                            Load your
        y = torch.LongTensor([0, 0, 1, 1])
                                                                            own data
        # provide attributes as you need
        data = Graph(x=x, y=y, edge_index=edge_index)
        torch.save(data, self.path)
        return data
if name _ == "__main__":
   # Run with self-loaded dataset
```

```
experiment(task="node_classification", dataset="mydataset", model="gcn")
```

Self-supervised Learning on Graphs

- Types of self-supervision:
 - generative learning
 - contrastive learning
- Learning paradigm:
 - Pre-training & Fine-tuning
 - Joint learning
 - Self-training
- Encoders: GCN, GAT, GIN
- Downstream tasks

Survey of Graph Self-supervised Learning

Table 1: An ov	verview of recent	generative	models on	graphs.	For acronyms	used, "PT+]	FT" refers to	Pre-training and
Fine-tuning, ".	JL" refers to Joint	t Learning,	"ST" refer	s to Self	-Training.			

Model	Self-Supervision Tasks	Training Scheme	Graph Encoders	Downstream Tasks
GAE/VGAE[1]	Graph Reconstruction	PT+FT	GCN	Node/Link
EdgeMask[2]	Graph Reconstruction	JL/PT+FT	GCN	Node
AttributeMask[2]	Graph Reconstruction	JL/PT+FT	GCN	Node
GraphCompletion[3]	Graph Reconstruction	JL/PT+FT	GCN/GAT/GIN/GraphMix	Node
GPT-GNN[4]	Graph Reconstruction	PT+FT	Heterogeneous Graph Transformer	Node/Link
S ² GRL[5]	Graph Property Prediction	PT+FT	GCN/GraphSAGE	Node
Distance2Cluster[2]	Graph Property Prediction	JL/PT+FT	GCN	Node
Node clustering[3]	Graph Property Prediction	JL/PT+FT	GCN/GAT/GIN/GraphMix	Node
Graph partitioning[3]	Graph Property Prediction	JL/PT+FT	GCN/GAT/GIN/GraphMix	Node
SuperGAT[6]	Graph Property Prediction	JL	SuperGAT	Node
Un_GraphSAGE[7]	Graph Property Prediction	PT+FT	GraphSAGE	Node
M3S[8]	Graph Property Prediction	ST	GCN	Node
AdvT[3]	Adversial Attack and Defense	JL	GCN	Node
Graph-Bert[9]	Hybrid	PT+FT	Graph Transformer	Node

Table 2: An overview of recent contrastive models on graphs.

Model	Augmentation Method	Contrastive Framework	Graph Encoders	Downstream Tasks
InfoGraph[10] GraphCL[11] GRACE[12] GCC[13] DGI[14] MVGRL[15] DwGCL[16]	Original Graph Graph Corruption Graph Corruption Random walk Sampling Graph Corruption + Sampling Graph Corruption + Sampling Graph Corruption + Sampling	Deep Infomax InfoNCE MoCo Deep Infomax Deep Infomax	GIN GCN GCN GIN GCN GCN/GraphSAGE GCN	Graph Graph Node Node/Graph Node Node Node

Results of Self-supervised Learning

- Learning paradigm:
 - Self-supervised (SL), Joint Learning (JL), unsupervised representation learning (URL)
- Semi-supervised datasets: Cora, Citeseer, PubMed
- Supervised datasets: Flickr, Reddit

Model	Training Scheme	Cora	Citeseer	PubMed	Flickr	Reddit
Linear	SL	$47.86 {\pm} 0.02$	$49.25 {\pm} 0.04$	69.17±0.03	$45.81 {\pm} 0.00$	67.95±0.01
GCN	SL	$81.53 {\pm}~0.26$	$71.75 {\pm} 0.05$	$79.30 {\pm} 0.31$	52.74 ± 0.13	$95.16 {\pm} 0.01$
EdgeMask	JL	$81.28 {\pm} 0.31$	$71.53 {\pm} 0.24$	79.55±0.11	52.55±0.06	95.07±0.01
AttributeMask	JL	$81.20 {\pm} 0.32$	$71.45 {\pm} 0.35$	$78.93 {\pm} 0.25$	52.45 ± 0.15	$95.00 {\pm} 0.01$
S^2 GRL	JL	$83.42 {\pm} 0.63$	$72.37 {\pm} 0.11$	$81.20 {\pm} 0.37$	$52.59 {\pm} 0.05$	$95.17 {\pm} 0.00$
Distance2Clusters	JL	$82.47 {\pm} 0.48$	$71.55 {\pm} 0.30$	$81.53 {\pm} 0.22$	52.24 ± 0.07	/
SuperGAT	JL	$82.77 {\pm} 0.53$	72.25 ± 0.52	$80.30 {\pm} 0.31$	$52.80 {\pm} 0.07$	$95.42 {\pm} 0.01$
MVGRL	URL	$80.76 {\pm} 0.80$	$65.84{\pm}2.72$	76.01±2.46	46.08±0.39	92.76±0.22
DGI	URL	$81.91 {\pm} 0.17$	$70.01 {\pm} 0.87$	76.49 ± 1.04	46.35 ± 0.11	$93.12{\pm}0.18$
EdgeMask	URL	75.23 ± 1.14	$68.96 {\pm} 0.96$	79.41 ± 1.15	$50.48 {\pm} 0.06$	$93.68 {\pm} 0.01$
AttributeMask	URL	$76.12 {\pm} 0.91$	$70.69 {\pm} 0.44$	75.16 ± 1.71	$51.57 {\pm} 0.15$	$93.37 {\pm} 0.01$
S^2 GRL	URL	$81.56 {\pm} 0.49$	$69.48 {\pm} 0.91$	$80.83 {\pm} 0.57$	$50.85 {\pm} 0.03$	$93.88 {\pm} 0.05$
Distance2Cluster	URL	$73.86 {\pm} 0.29$	66.53±0.29	$79.44 {\pm} 0.34$	$50.24 {\pm} 0.07$	/

Heterogeneous Graph Benchmark (HGB)

- A unified benchmark datasets and evaluation pipelines for heterogeneous graph research.
- **Paper:** Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks. *(KDD'21)*
- Code & Data: https://github.com/THUDM/HGB
- Leaderboard: <u>https://www.biendata.xyz/hgb/</u>
- There is also a simple baseline Simple-HGN in HGB. We find that a rather simple design of heterogeneous GNN can reach SOTA.

Simple-HGN

- GAT + relation type attention + residual connection + L2 norm
 - cogdl implementation
 - dgl implementation
- "Simple" is an interesting trend in recent years
 - The table shows the number of papers with "simple" in title or abstract for different years

Background:

Recently, works have proved that adversarial attacks can threat the *robustness* of graph ML models in various tasks.

Problems:

- 1. Ill-defined threat model in previous works.
- 2. Absence of unified and standard evaluation approach.

Example of GRB evaluation scenario

GRB: Graph Robustness Benchmark						
Evaluation	Datasets	Evaluator	Leaderboards			
Module	GNN Models	Adversarial Attacks	Adversarial Defenses			
Backend	Pytorch	CogDL	DGL			

GRB framework

Solution: Graph Robustness Benchmark (GRB)

Scalable, general, unified, and reproducible benchmark on adversarial robustness of graph ML models, which facilitates fair comparisons among various attacks & defenses and promotes future research in this field.

Graph Robustness Benchmark: Rethinking and Benchmarking Adversarial Robustness of Graph Neural Networks

Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Jie Tang

Graph Robustness Benchmark (GRB): Key Features

Elaborated Datasets	Scalability	Datasets from small to large scales.			
	Specificity	Novel splitting scheme + Preprocessing.			
Modular Framework	Implementation	GNNs (GCN, SAGE, GAT, GIN, APPNP,)			
		Attacks (FGSM, PGD, SPEIT, TDGIA,)			
		Defenses (Adversarial Training, GNNGuard,)			
	Backend	Pytorch	CogDL	DGL	
Unified Evaluation	Scenario	Well-defined realistic threat model.			
	Fairness	Unified settings for attackers and defenders.			
	Pipeline	Easy-to-use evaluation pipeline.			
Reproducible Leaderboard	Reproducibility	Availability of methods and related materials.			
	Up-to-date	Continuously maintained to track progress.			

All discussions and contributions are highly welcome!

Homepage:

https://cogdl.ai/grb/home

Github:

https://github.com/THUDM/grb

Leaderboard:

https://cogdl.ai/grb/leaderboard/

Docs: https://grb.readthedocs.io/

Google Group:

https://groups.google.com/g/graph

-robustness-benchmark

Contact:

cogdl.grbteam@gmail.com

qinkai.zheng1028@gmail.com

Recommendation Application

- Build recommendation via pipeline API
- Integrate LightGCN (SIGIR'20)
- Similar to Amazon Personalize

```
import numpy as np
from cogdl import pipeline

data = np.array([[0, 0], [0, 1], [0, 2], [1, 1], [1, 3], [1, 4], [2, 4], [2, 5], [2, 6]])
rec = pipeline("recommendation", model="lightgcn", data=data, max_epoch=1)
print(rec([0]))

rec = pipeline("recommendation", model="lightgcn", dataset="ali", max_epoch=1)
print(rec([0]))
```

AMiner Subscribe

Recommend papers, scholars to users

CogDL & dgSPARSE

Summary

- Preliminary
- Basic GNNs
- Advanced GNNs
 - Over-fitting and over-smoothing issues
 - From shallow GNNs to very deep GNNs
- All with CogDL
 - Efficiency (Time / Memory)
 - Customization (Layer / Model / Dataset)
 - Benchmarks (HGB / GRB)
 - Applications

Thank you!

Collaborators:

Zhenyu Hou, Guohao Dai, Yu Wang et al. (THU)

Yang Yang (ZJU)

Peng Zhang (Zhipu)

Hongxiao Yang, Chang Zhou, et al. (Alibaba)

Yukuo Cen, KEG, Tsinghua U. Jie Tang, KEG, Tsinghua U.

https://github.com/THUDM/cogdl http://keg.cs.tsinghua.edu.cn/jietang