
1

Learning GNNs with CogDL

Yukuo Cen, Jie Tang
Knowledge Engineering Group (KEG)
Computer Science and Technology

Tsinghua University

CogDL is publicly available at https://github.com/THUDM/cogdl

https://github.com/THUDM/cogdl

2

Outline

• Preliminary
• Basic GNNs
• Advanced GNNs
• All with CogDL

3

Networked World

• 2.7 billion MAU
• 17 billion photos/day

• 550 million MAU
• 12 billion pageview/day

• 350 million MAU
• 5 million tweets/day

•QQ: 600 million MAU
• WeChat: 1.2 billion MAU

• 1.15 billion MAU
• 95 million pics/day

• 2.3 billion trans. on 11/11
• ~500 billion GMV on 11/11

• 500 million MAU
• 30 minutes/user/day

• ~1.9 billion MAU
• 70 minutes/user/day

4

Machine Learning with Networks

• ML tasks in networks:
– Node classification

• Predict a type of a given node
– Link prediction

• Predict whether two nodes are linked
– Community detection

• Identify densely linked clusters of nodes
– Network similarity

• How similar are two (sub)networks?

5

Graph Neural Networks

Network Embedding

Origin of Representation Learning

6

Why is it hard?

• Modern deep learning toolkit is designed for
simple sequences or grids.
– CNNs for fixed-size images/grids...
– RNNs or word2vec for text/sequences...

• But networks are far more complex!
– Complex topographical structure
– No fixed node ordering or reference point
– Often dynamic and have multimodal features.

7

Why is it hard? (cont.)

• Billion-scale real-world graphs!
– How to store large-scale graphs
– Large cost of model training
– GPU memory bounded

• Potential issues in training GNNs
– Over-fitting issue
– Over-smoothing issue

8

CogDL Introduction

CogDL aims at providing researchers and
developers with easy-to-use APIs, reproducible
results, and high efficiency for most graph tasks
and applications.

Vision

Easy-to-use

Philosophy

Reproducibility Efficiency

Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yang Yang,
Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. CogDL: An Extensive Toolkit for Deep
Learning on Graphs. arXiv preprint 2021.

9

CogDL Development

2020 2021

Prototype

Development
started

V0.2
Experiment API

Pipeline API

V0.1.1
Hyper-parameter

search

V0.1
Basic APIs

V0.1.2
Trainer API

Next steps

V0.3
Fast Ops

V0.4
Training
Speedup

Prerequisite: PyTorch environment
CogDL installation: pip install cogdl
or git clone https://github.com/THUDM/cogdl

V0.4.1
Deep GNNs

https://github.com/THUDM/cogdl

10

Tasks, Datasets, Models in CogDL

• >10 Tasks:
– node classification
– graph classification

• >60 Datasets:
– Social networks
– Academic graphs
– Molecular graphs

• >70 models:
– Network embedding
– Graph Neural Networks

11

Experiment API

• Feed task, dataset, model, (hyper-parameters),
(search space)

12

Results of Experiment API

13

Results of Node Classification

• Two kinds of models：
– Semi-supervised：GCN, GAT, GRAND, …
– Self-supervised：MVGRL, DGI

• Citation networks：Cora, Citeseer, Pubmed

14

Results of Graph Classification

• Two kinds of models
– Self-supervised：InfoGraph, graph2vec, DGK
– Supervised：GIN, DiffPool, SortPool, …

• Two types of graphs
– Bioinformatics：MUTAG, PTC, NCI1, PROTEINS
– Social networks：IMDB-B/M, COLLAB, REDDIT-B

15

Pipeline API

• Feed application, model, (hyper-parameters)

16

Outline

• Preliminary
• Basic GNNs
• Advanced GNNs
• All with CogDL

17

Graph Neural Networks

• Layer-wise propagation:

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR ’17.

18

Graph Neural Networks

a

e

v

b

d

c

• Neighborhood Aggregation:
– Aggregate neighbor information and pass into a neural network
– It can be viewed as a center-surround filter in CNN---graph convolutions!

𝒉! = 𝑓(𝒉" , 𝒉# , 𝒉$, 𝒉% , 𝒉&)

19

GCN: Graph Convolutional Networks

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

ℎ#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

the neighbors of node 𝑣

node 𝑣’s embedding at layer 𝑘

Non-linear activation function (e.g., ReLU)

parameters in layer 𝑘

a

e

v

b

d

c

1. Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017

20

GCN Performance

• 2-layer GCN：𝒁 = softmax *𝑨 𝜎 *𝑨𝑿𝑾! 𝑾"

21

GraphSAGE

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

ℎ#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)a

e

v

b

d

c

GCN

GraphSAGE

𝒉!" = 𝜎([𝑨"⋅ AGG ℎ#"'(, ∀𝑢 ∈ 𝑁 𝑣 , 𝑩"ℎ!"'(])

Generalized aggregation: any differentiable
function that maps set of vectors to a single vector

1. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

22

GraphSAGE

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

ℎ#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)a

e

v

b

d

c

GCN

GraphSAGE

𝒉!" = 𝜎([𝑨"⋅ AGG ℎ#"'(, ∀𝑢 ∈ 𝑁 𝑣 , 𝑩"ℎ!"'(])

Generalized aggregation: any differentiable
function that maps set of vectors to a single vector

Instead of summation, it concatenates
neighbor & self embeddings

1. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS 2017

23

GraphSAGE Performance

• AGGs: GCN / mean / LSTM / max-pooling
• Supervised (Sup.), Unsupervised (Unsup.)

24

Graph Attention Networks (GAT)

a

e

v

b

d

c Realistically, neighbors play different influences

1. Velickovic et al. Graph Attention Networks. ICLR 2018

25

Graph Attention Networks (GAT)

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

GCN

Graph Attention

𝒉!" = 𝜎(&
#∈% ! ∪!

𝛼!,#𝑾"𝒉#"'()

Learned attention weights

a

e

v

b

d

c

1. Velickovic et al. Graph Attention Networks. ICLR 2018

26

Graph Attention Networks (GAT)

• How to compute attention coefficients？
• 𝑒#$ = LeakyReLU 𝒓𝑻 𝑾𝒉# 𝑾𝒉$

• 𝛼#$ = softmax 𝑒#$ = &'()*+
∑,∈-(*) &'()*,

27

GAT Performance

28

Outline

• Preliminary
• Basic GNNs
• Advanced GNNs
• All with CogDL

29

Advanced GNNs

• JKNet (ICML’18)
• APPNP (ICLR’19)
• DropEdge (ICLR’20)
• GRAND (NeurIPS’20)
• GCNII (ICML’20)
• DeeperGCN (Arxiv 2020)
• RevGNN (ICML’21)

30

JKNet (ICML’18)

• Connections between influence distributions
and random walk distribution:

• Hard to determine propagation step!
• Layer aggregation!

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "Representation learning on graphs with
jumping knowledge networks." In ICML’18.

31

JKNet (ICML’18)

• Layer-aggregation Mechanism
– Concatenation
– Max-pooling
– LSTM-attention

32

APPNP (ICLR’19)

• Personalized PageRank (PPR):

• By solving the equation, we obtain:

• Personalized propagation of neural predictions (PPNP):
– generate predictions based on its own features and then
propagate them via PPR:

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank.
In ICLR’19.

33

APPNP (ICLR’19)

• PPNP needs 𝑂(𝑛#) to calculate the full PPR matrix:

• Approximate PPNP (APPNP):
– via power iteration (random walk/propagation) step

34

DropEdge (ICLR’20)

• Two issues: over-fitting and over-smoothing
• DropEdge:
• Prevent over-fitting:

– unbiased data augmentation
• Alleviate over-smoothing:

– Slow down the convergence of over-smoothing
– Reduce information loss

Rong, Yu, Wenbing Huang, Tingyang Xu, and Junzhou Huang. "Dropedge: Towards deep graph convolutional networks on node classification." arXiv
preprint arXiv:1907.10903 (2019).

35

DropEdge Discussion

• DropEdge vs Dropout
– Dropout: no help to prevent over-smoothing

• DropEdge vs DropNode
– GraphSAGE, FastGCN, ASGCN

• DropEdge vs Graph-Sparsification
– Random vs Fixed

36

DropEdge Performance

37

GRAND (NeurIPS’20)

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

Consistency
RegularizationAugmented

features !𝑿

𝑺 Augmentations ?

Graph Random Neural Network (GRAND)
• Consistency Regularized Training:

– Generates 𝑆 data augmentations of the graph
– Optimizing the consistency among 𝑆 augmentations of the graph.

Augmentation 1

Augmentation 𝑆

Optimize the
consistency

?

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

38

GRAND (NeurIPS’20)

• Random Propagation (DropNode + Propagation):
– Enhancing robustness: Each node is enabled to be not sensitive to specific

neighborhoods.
– Mitigating over-smoothing and overfitting: Decouple feature propagation from feature

transformation.
Random Propagation

Augmented features

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

39

Random propagation: DropNode vs Dropout

• Dropout drops each element in 𝑿 independently
• DropNode drops the entire features of selected nodes, i.e., the row

vectors of 𝑿, randomly

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

40

GRAND (NeurIPS’20)

Consistency
RegularizationAugmented

features !𝑿

𝑺 Augmentations

Random Propagation as data augmentation

Optimize
the

consistenc
y

?

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

41

GRAND: Consistency Regularization

Average

Sharpening

Distributions of a
node after

augmentations

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

42

GRAND Results

Instead of the marginal improvements by
conventional GNN baselines over GCN,
GRAND achieves much more significant

performance lift in all three datasets!

GCNs

Sampling
GCNs

Regularization
GCNs

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

43

GCNII (ICML’20)

• Initial residual connection:
– Similar approach to APPNP (but APPNP remains shallow)
– Combine the smoothed representations with initial features

• Identity mapping:
– Similar to the motivation of ResNet
– Add an identity matrix to the weight matrix

Chen, Ming, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. "Simple and deep graph convolutional networks." In ICML’20.

44

GCNII Results

• GCNII (Combine the two techniques)

• GCNII*: employ different weights for PH and H(0):

45

DeeperGCN

• Generalized Aggregation Function (Mean-Max)
– Find a better aggregator than mean and max

• SoftMax_Agg:
– lim(→* SoftMax_Agg(= Mean
– lim(→+ SoftMax_Agg(= Max

• PowerMean:
– PowerMean_Agg,-. = Mean
– lim,→+ PowerMean_Agg, = Max

46

DeeperGCN

• Better residual connections:
– pre-activation variant of residual connections
– BN/LN à ReLU à GraphConv à Addition

47

Deep GNNs (From 112 to 1000 layers)

• DeeperGCN: All You Need to Train Deeper GCNs
– Li et al., June 2020
– Generalized Message Aggregation
– Pre-activation residual connections
– Up to 112 layers (GPU memory bounded)

• Training Graph Neural Networks with 1000 Layers
– Li et al., ICML 2021
– Reversible connections
– Up to 1000 layers

Li, Guohao, et al. "Deepergcn: All you need to train deeper gcns." arXiv preprint arXiv:2006.07739 (2020).
Li, Guohao, et al. "Training Graph Neural Networks with 1000 Layers." arXiv preprint arXiv:2106.07476 (2021).

48

Recall Backpropagation in GNNs

• Graph convolution：
𝑯 +," = 𝑨𝑯 + 𝑾+

• Backward of graph convolution：
∇𝑯 0 = 𝑨.∇𝑯 012 𝑾+

.

∇𝑾0= 𝑯 + .𝑨.∇𝑯 012

∇𝑨= ∇𝑯 012 𝑾+
.𝑯 + .

• We need to save 𝑯 + for each layer, which
costs O(ND) memory per layer。

49

GNNs with 1000 Layers (ICML’21)

• Challenges: O(LND) memory, linear to the number layers
• Reversible connections!
• (similar to NeurIPS 2017: The reversible residual network:

Backpropagation without storing activations)
• Grouped Reversible GNN block:

Forward (from 𝑋! to 𝑋!′) Backward (from 𝑋!′ to 𝑋!)

50

RevGNN on ogbn-proteins

• ogbn-proteins dataset：
– Node: proteins
– Edge: biologically meaningful associations (e.g., homology)

51

RevGNN v.s. ResGNN

52

RevGNN v.s. all variants

• RevGNN-Wide
– 448 layers+224

hidden
• RevGNN-Deep

– 1001 layers+80
hidden

• Compared with
RevGNN/ResGNN/W
T/DEQ-x (x: hidden)

• Datapoint size is
proportional to
\sqrt(#parameters)

53

Outline

• Preliminary
• Basic GNNs
• Advanced GNNs
• All with CogDL

54

All with CogDL

• Efficiency
– Graph storage in CogDL
– Sparse operators in CogDL
– Training on large-scale graphs
– Training very deep GNNs

• Customization
– Customized usage in CogDL

• Benchmarks:
– Self-supervised learning
– Heterogeneous Graph Benckmark (HGB)
– Graph Robustness Benchmark (GRB)

• Applications:
– Recommendation

55

Sparse Storage of Adjacency Matrix

• COO format：
– (row, col) or (row, col, value)，size: |E|*2/3
– [[0,0,1], [0,2,2], [1,2,3], [2,0,4], [2,1,5], [2,2,6]]

• CSR format：
– row_ptr：size |V|+1
– col_indices: size |E|
– value: size |E|
– [0, 2, 3, 6], [0, 2, 2, 0, 1, 2], [1, 2, 3, 4, 5, 6]

1 0 2
0 0 3
4 5 6

56

Graph Storage in CogDL

class Graph: (defined in cogdl.data)
• x：node feature matrix
• y：node labels
• edge_index：COO format matrix
• edge_weight：edge weight (if exists)
• edge_attr：edge attributes (if exists)
• row_ptr：row index pointer for CSR matrix
• col_indices：column indices for CSR matrix

57

Usage of CogDL’s Graph

• Graph Initialization
– g = Graph(edge_index=edge_index)
– g.edge_weight = torch.rand(n)

• Commonly used operators：
– add_self_loops()
– sym_norm()
– degrees()
– subgraph()
– …

58

Recall Sparse Operators in GNNs

• GCN（Sparse Maxtrix-Matrix Multiplication, SpMM）
𝑯 '() = 𝑨𝑯 ' 𝑾

• GAT（ Edge-wise-softmax）

𝛼'* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒'* =
exp 𝑒'*

∑+∈-! exp 𝑒'+

• GAT（Multi-Head SpMM）

𝒉' = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 <
*∈-!

𝛼'*+𝑾+𝒉*

59

GCN/GAT Layer in CogDL

𝐻 '() = 𝐴𝐻 ' 𝑾 . 𝛼!" = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒!" =
exp 𝑒!"

∑#∈%$ exp 𝑒!#

ℎ! = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 D
"∈%$

𝛼!"#𝑾#ℎ"

60

Implementation of GCN/GAT Layer

𝐻 '() = 𝐴𝐻 ' 𝑾 . 𝛼!" = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒!" =
exp 𝑒!"

∑#∈%$ exp 𝑒!#

ℎ! = 𝐶𝑂𝑁𝐶𝐴𝑇 𝜎 D
"∈%$

𝛼!"#𝑾#ℎ"

61

33
0
G

40
0
G

9.
5
T

10
.0
T

cuS
PA
RS
E

dg
SPA

RS
E

GE
MM

(de
nse

)

GP
U p

ea
k

Lack efficient sparse kernels

Big gap between FLOPS of sparse kernels
and hardware peak performance.

57%

cuS
PA
RS
E

dg
SPA

RS
E

SpMM

14.01x

cuS
PA
RS
E

dg
SPA

RS
E

SDDMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

Multihead SpMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

SpMV

57%

cuS
PA
RS
E

dg
SPA

RS
E

SpMM

14.01x

cuS
PA
RS
E

dg
SPA

RS
E

SDDMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

Multihead SpMM

16%

cuS
PA
RS
E

dg
SPA

RS
E

SpMV

……

……

dgSPARSE, Deep Graph SPARSE
Efficient Implementation on GPUs

Efficient Sparse Kernels

62
6
2

20%

cu
SP
AR
SE

dg
SP
AR
SE

Tesla V100 (Volta)

40%

cu
SP
AR
SE

dg
SP
AR
SE

RTX 2080 (Turing)

57%

cu
SP
AR
SE

dg
SP
AR
SE

RTX 3090 (Ampere)

Graph

Efficient map
• Workload balance

• Thread coarsening

• ……

Efficient reduce
• Inner-warp reduction

• Inter-warp reduction

• ……

SIMT GPU architecture

Graph

Tiny Effort to new GPU architecture

Deep Graph Sparse (dgSPARSE) Library

63

Performance of GCN/GAT model

• Setting：2-layer GCN/GAT，hidden size=128
• Supported by dgSPAESE

64

Training on Large-scale Graphs

• Billion-scale social networks and recommender systems
• Main challenge: GPU memory bounded!
• Training GNNs via mini-batch sampling

Neighbor Sampling
(NeurIPS ’17)

GraphSAINT
(ICLR ’20)

ClusterGCN
(KDD ’19)

1. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NeurIPS ’17.
2. Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An efficient algorithm for training

deep and large graph convolutional networks. In KDD ’19.
3. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph sampling based

inductive learning method. In ICLR ’20.

65

ClusterGCN

• Graph partition (METIS)
• Train GNNs via mini-batch

• Memory: O(NFL) -> O(bFL)

66

GraphSAINT

• Unbiased sampler
– Random node/edge/walk sampler

• Unbiased aggregated representations

67

GraphSAINT Performance

68

Multi-GPU implementation:
sampling + PyTorch DDP

üSampler in CogDL
[+] NeighborSampling
[+] ClusterGCN
[+] GraphSAINT

ü4 GPUs ~ 3x↑ speedup

Multi-GPU Training

Usage: python scripts/train.py --model gcn --task node_classification
--dataset reddit --trainer dist_clustergcn

69

Other Solutions for very Deep GNNs?

• GPU memory is the bottleneck for training very
deep GNNs.

• Recall RevGNN uses reversible blocks.
• Are there other solutions?
• Activation Compressed Training!

70

ActNN : Activation Compressed Training

• ActNN : Reducing Training Memory Footprint via 2-Bit
Activation Compressed Training (By Jianfei Chen,
Tsinghua)

• “ActNN reduces the memory footprint of the activation
by 12×.”

• https://github.com/ucbrise/actnn

Chen, Jianfei, et al. "ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training." arXiv preprint arXiv:2104.14129 (2021).

https://github.com/ucbrise/actnn

71

ActNN Theory

72

ActNN Implementation

73

ActNN Performance

• Experiment on ImageNet

74

When SpMM meets ActNN (in CogDL)
𝑯 !"# = 𝑨𝑯 ! 𝑾

75

Experimental Results

• Default setting of CogDL

Dataset Origin GCN GCN + actnn

Cora 81.30 ± 0.22 81.27 ± 0.19

Citeseer 71.73 ± 0.54 71.70 ± 0.28

Pubmed 79.17 ± 0.12 79.10 ± 0.08

Flickr 50.74 ± 0.10 50.89 ± 0.04

Reddit 95.01 ± 0.02 94.89 ± 0.01

76

Activation Memory (GCN + ActNN)

• Setting：𝐻 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑅𝑒𝐿𝑈 𝐵𝑁 𝐴𝐻𝑊

#dataset, #layers, #hidden Origin
GCN

GCN +
actnn ratio Idea ratio

PPI, 5, 2048 3704 420 8.8x

raw: 32*2 /
(2.125*2+1) =12.2x

+bn: 32*3 /
(2.125*3+1) = 13.0x

+bn+dropout: 32*4 /
(2.125*3+2)=15.3x

PPI, 5, 2048 (+bn) 5484 539 10.2x
PPI, 5, 2048 (+bn,
+dropout) 7711 594 13.0x

Flickr, 5, 512 1420 154 9.2x
Flickr, 5, 512 (+bn) 2117 201 10.5x
Flickr, 5, 512 (+bn,
+dropout) 2991 223 13.4x

Flickr, 10, 512 3178 311 10.2x
Flickr, 10, 512 (+bn) 4747 415 11.4x
Flickr, 10, 512 (+bn,
+dropout) 6712 465 14.4x

77

Activation Memory (GraphSAGE + ActNN)

• Setting：𝐻 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑅𝑒𝐿𝑈 𝐵𝑁 𝐶𝑜𝑛𝑐𝑎𝑡 𝐴𝐻,𝐻 𝑊

#dataset, #layers, #hidden Origin
SAGE

SAGE +
actnn ratio Idea ratio

PPI, 5, 2048 5524 580 9.5x

raw: 32*2 /
(2.125*2+1) =12.2x

+bn: 32*3 /
(2.125*3+1) = 13.0x

+bn+dropout: 32*4 /
(2.125*3+2)=15.3x

PPI, 5, 2048 (+bn) 7304 698 10.5x
PPI, 5, 2048 (+bn,
+dropout) OOM 754 -

Flickr, 5, 512 2457 209 11.8x
Flickr, 5, 512 (+bn) 3155 255 12.4x
Flickr, 5, 512 (+bn,
+dropout) 4027 278 14.5x

Flickr, 10, 512 5090 430 11.8x
Flickr, 10, 512 (+bn) 6659 534 12.5x
Flickr, 10, 512 (+bn,
+dropout) 8624 584 14.8x

78

Activation Memory (GCNII + ActNN)

• Setting：

#dataset,
#layers, #hidden GCNII GCNII +

actnn ratio ideal

PPI, 10, 512 4008 340 11.8x

(32*3) /
(2*2.125+2
)=15.36

PPI, 20, 512 7708 619 12.5x

PPI, 20, 1024 7879 603 13.1x

Flickr, 5, 512 3421 229 14.9x

Flickr, 10, 512 6268 413 15.2x

Flickr, 5, 1024 6660 438 15.2x

#layer
s

Origin
GCNII GCNII + actnn

32 84.83±
0.33 84.67± 0.12

64 85.13±
0.61 85.00± 0.37

128 84.83±
0.58 85.20± 0.36

256 85.00±
0.08 85.37± 0.54

79

Activation Memory (GIN + ActNN)

• Setting：𝐻(0) = 𝑀𝐿𝑃(0) 1 + 𝜖 𝐻 02. + 𝐴𝐻 02.

ℎ3 = 𝐶𝑂𝑁𝐶𝐴𝑇(𝑅𝐸𝐴𝐷𝑂𝑈𝑇 𝐻 0 , 𝑙 = 0, 1, … 𝐿

#dataset, #batch, #layers,
#hidden GIN GIN + actnn ratio ideal

NCI1, 512, 20, 512 2723 262 10.4x

(32*3) / (2.125*3+1) =
13.0x

NCI1, 512, 20, 1024 5735 540 10.6x
NCI1, 1024, 20, 512 5502 528 10.4x
NCI1, 512, 40, 512 6231 590 10.6x

80

Solutions to Very Deep GNNs

Memory
complexity Extra time limitations Suitable scenario

Reversible
GNNs O(ND) One additional

forward pass

Limited feature crosses;
Some operations are limited
(e.g, dropout)

Arbitrary layers

ActNN + GNN

O((L/C)ND),
C:
compression
ratio (<16)

Quantize +
Dequantize

Gradient approximation;
Memory complexity is still
linear to L

Hundreds of layers

GNN with
checkpointing O(sqrt(L)ND) One additional

forward pass N/A Thousands of layers

81

How to Design Customized Layer?

• Message Passing!

• Message: func ℎ! , ℎ" , 𝑒!" → 𝑚!" # |E|*d
• Aggregate: func 𝑚!" → 𝑚! # |V|*d
• Update: func ℎ! , 𝑚! → ℎ! # |V|*d

82

Message-passing Layer in CogDL

• SpMM (𝐴𝑋) cannot handle complex propagation
operators such as involving edge features

• Implementation via message passing

83

Compare GIN with GINE

84

Customized Models

1. Define hyper-parameters

2. Define modules

3. Define forward function

85

Customized Datasets

Load your
own data

86

Self-supervised Learning on Graphs

• Types of self-supervision：
– generative learning
– contrastive learning

• Learning paradigm：
– Pre-training & Fine-tuning
– Joint learning
– Self-training

• Encoders：GCN, GAT, GIN
• Downstream tasks

87

Survey of Graph Self-supervised Learning

88

Results of Self-supervised Learning

• Learning paradigm:
– Self-supervised (SL), Joint Learning (JL), unsupervised representation learning (URL)

• Semi-supervised datasets：Cora, Citeseer, PubMed
• Supervised datasets：Flickr, Reddit

89

Heterogeneous Graph Benchmark (HGB)

• A unified benchmark datasets and evaluation pipelines for
heterogeneous graph research.

• Paper: Are we really making much progress? Revisiting,
benchmarking and refining heterogeneous graph neural
networks. (KDD'21)

• Code & Data: https://github.com/THUDM/HGB
• Leaderboard: https://www.biendata.xyz/hgb/
• There is also a simple baseline Simple-HGN in HGB. We find

that a rather simple design of heterogeneous GNN can reach
SOTA.

https://github.com/THUDM/HGB
https://www.biendata.xyz/hgb/

90

Simple-HGN

• GAT + relation type attention + residual connection +
L2 norm
– cogdl implementation
– dgl implementation

• "Simple" is an interesting trend in recent years
– The table shows the number of papers with "simple" in title

or abstract for different years

0

10

20

30

40

50

60

70

2016 2017 2018 2019 2020

ACL CVPR ICML

https://github.com/THUDM/cogdl/tree/master/examples/simple_hgn
https://github.com/THUDM/HGB/tree/master/NC/benchmark/methods/baseline

91

Background:
Recently, works have proved that adversarial
attacks can threat the robustness of graph ML
models in various tasks.
Problems:

1. Ill-defined threat model in previous works.
2. Absence of unified and standard evaluation

approach.

Solution: Graph Robustness Benchmark (GRB)
Scalable, general, unified, and reproducible
benchmark on adversarial robustness of graph ML
models, which facilitates fair comparisons among
various attacks & defenses and promotes future
research in this field.

Example of GRB evaluation scenario

Graph Robustness Benchmark: Rethinking and
Benchmarking Adversarial Robustness of Graph Neural
Networks
Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Jie Tang

GRB framework

92

All discussions and contributions

are highly welcome!

Homepage:

https://cogdl.ai/grb/home

Github:

https://github.com/THUDM/grb

Leaderboard:
https://cogdl.ai/grb/leaderboard/

Docs: https://grb.readthedocs.io/

Google Group:

https://groups.google.com/g/graph

-robustness-benchmark

Contact:

cogdl.grbteam@gmail.com

qinkai.zheng1028@gmail.com

https://cogdl.ai/grb/home
https://github.com/THUDM/grb
https://cogdl.ai/grb/leaderboard/
https://grb.readthedocs.io/
https://groups.google.com/g/graph-robustness-benchmark
http://gmail.com
http://gmail.com

93

Recommendation Application

• Build recommendation via pipeline API
• Integrate LightGCN (SIGIR’20)
• Similar to Amazon Personalize

94

AMiner Subscribe

• Recommend papers, scholars to users

95

CogDL & dgSPARSE

• Experiment API
• Validate ideas

• Pipeline API
• Deploy Apps

Ops
V2V

x x x!

" # $

⊗

x: Non-zero element in the
matrix

=

• Fast computation
• Fast development• Operator APIs

• Fast deployment
• Sparse APIs
• Hardware support

GNNs Apps

dgSPARSE

CogDL

Hardware

96

Summary

• Preliminary
• Basic GNNs
• Advanced GNNs

– Over-fitting and over-smoothing issues
– From shallow GNNs to very deep GNNs

• All with CogDL
– Efficiency (Time / Memory)
– Customization (Layer / Model / Dataset)
– Benchmarks (HGB / GRB)
– Applications

97

Yukuo Cen, KEG, Tsinghua U. https://github.com/THUDM/cogdl
Jie Tang, KEG, Tsinghua U. http://keg.cs.tsinghua.edu.cn/jietang

Thank you！
Collaborators:

Zhenyu Hou, Guohao Dai, Yu Wang et al. (THU)
Yang Yang (ZJU)

Peng Zhang (Zhipu)
Hongxiao Yang, Chang Zhou, et al. (Alibaba)

https://github.com/THUDM/cogdl
http://keg.cs.tsinghua.edu.cn/jietang

